Beam monitors and etc.

presented by **Greg Mitchell**

content by
Chad Gillis
University of Manitoba

The NPDGamma Apparatus

Helmholtz coils provide uniform vertical magnetic field.

- LH₂ moderator slows neutrons (peak at 9 meV = 3 Å)
- Frame overlap chopper prevents pulse overlap
- Pulsed source provides correspondence between neutron energy and time of flight.

³He has a strong affinity for neutrons.

$$n + {}^{3}He \rightarrow p + {}^{3}H + 764 \text{ keV of KE}$$

- ³He pressures are adjusted according to the desired neutron absorption
- Reaction products do not interfere with the rest of the apparatus.
- ullet Background γ -rays have a negligible effect.

The NPDGamma Beam Monitors

<u>Primary function</u>: To provide a signal proportional to the rate of neutrons passing through.

Gas mixture:

- $\frac{1}{2}$ Atm (3 He + 4 He)
- $\frac{1}{2}$ Atm N₂

Amount of ³He depends on monitor's purpose

Uses of the NPDGamma Beam Monitors

Until present:

- Monitor neutron flux.
- Measurement of beam polarization:

• Commissioning of the RF spin flipper:

In the future:

Measurement of the ortho-para ratio
 of the LH₂ target:

Monitor M3

voltage signal from upstream monitor preamp

flux calculation normalized to monte carlo

Beam Polarizer Diagnostics

The probability of interaction for a neutron with ³He is highly spin-dependent:

+ 3He
$$\sigma_p$$
 ~ 3 barns + 3He σ_a ~ 17,000 barns @ 10 meV σ_a α 1/v (v = neutron speed)

A cell of polarized ³He filters out neutrons of one spin state.

Beam monitors are used to measure that effect.

Relative transmission through the cell polarized and unpolarized is an absolute measure of neutron polarization P_n :

$$P_n = \sqrt{1 - \left(\frac{T_0}{T}\right)^2}$$

 $T_0 = {\rm transmission~of~unpolarized~cell}$ $T = {\rm transmission~of~polarized~cell}$

Knowing P_n and the amount of 3 He in the cell, it's possible to calculate the 3 He polarization:

$$P_n = tanh(n_3\sigma l P_3)$$

 $P_{
m 3}={}^{
m 3}{
m He}$ polarization $n_{
m 3}={}^{
m 3}{
m He}$ number density $l={
m width}$ of cell

$$T_0 = e^{-n\sigma l}$$
$$ln(T_0) = -n\sigma l \propto tof$$

Unpolarized ³He Transmission (corrected for glass cell wall transmission)

$$P_3 = \frac{n_3 \sigma l P_3}{n_3 \sigma l} = \frac{0.0328 \ ms^{-1} \ tof}{0.0714 \ ms^{-1} \ tof} = 0.46$$

Spin Flipper Commissioning

Spin-dependent transmission of the analyzer cell can be seen in the third monitor:

Spin flipper performs an imperfect flip:

$$P_n \to -RP_n$$
 ; $R < 1$

The ratio between spin flipper on and spin flipper off signals is dependent on polarizer and analyzer properties and R.

A Spin Flipper Scan

A scan through spin flipper settings determines the operating parameters corresponding to maximum efficiency

Important since:

- Spin flip efficiency enters into the asymmetry calculation.
- Maximizing spin flip efficiency minimizes running time.

Concluding Remarks

- Chad has written technical notes showing: that the effect of scattering (glass cell windows, Si oven windows, Al monitor windows) on polarization determination is 0.1%; and that the effect of cell curvature on polarization is 0.2%.
- The monitors and their preamps worked well in the commissioning run and should be fine for the production run.